Design of a microfluidic device with a non-traditional flow profile for on-chip damage to zebrafish sensory cells
نویسندگان
چکیده
Hearing loss affects millions of people worldwide and often results from the death of the sensory hair cells in the inner ear, and exposure to intense noise is one of the leading causes of hair cell damage. Recently, the zebrafish lateral line system has emerged as a powerful in vivo model for real-time studies of hair cell damage and protection. In this research, we designed a microfluidic device for inducing noise damage in hair cells of the zebrafish lateral line. As the first step, a 3D computational fluid dynamics (CFD) simulation was utilized to predict the flow pattern inside the device. An ideal flow pattern for our application should feature higher velocity near the sidewalls to over-stimulate the externally located hair cells, and minimum flow in the middle of the channel to protect the fish from high pressure on the head. Flow induced from ordinary channel geometry with a single inlet/outlet pair would not work because the parabolic velocity profile features the maximum flow speed in the middle of the channel. In order to achieve the desired flow pattern, sidewall inlet/outlet pairs were used to suppress the growth of boundary layers. CFD simulation was used to design parameters such as the dimensions of the microfluidic channel and the angle of the inlets and outlets. It was found that in the case of an empty 2.0 mm wide channel with the inlet/outlet pairs set to 45◦, the flow velocity at the side of the channel would be 6.7 times faster than the velocity in the middle, approaching the optimal flow characteristics. In the case of a fish-loaded channel, simulation shows that a 1.0 mm wide channel with a 60◦ inlet/outlet angle creates the lowest pressure (0.3 Pa) on the fish head while maintaining a reasonably strong shear stress (1.9 Pa) on the lateral line hair cells.
منابع مشابه
Fluorescent Contrast agent Based on Graphene Quantum Dots Decorated Mesoporous Silica Nanoparticles for Detecting and Sorting Cancer Cells
Background and Objectives: The inability of classic fluorescence-activated cell sorting to single cancer cell sorting is one of the most significant drawbacks of this method. The sorting of cancer cells in microdroplets significantly influences our ability to analyze cancer cell proteins. Material and Methods: We adapted a developed microfluidic device as a 3D in vitro model to sorted MCF-7 c...
متن کاملDrug Discovery Acceleration Using Digital Microfluidic Biochip Architecture and Computer-aided-design Flow
A Digital Microfluidic Biochip (DMFB) offers a promising platform for medical diagnostics, DNA sequencing, Polymerase Chain Reaction (PCR), and drug discovery and development. Conventional Drug discovery procedures require timely and costly manned experiments with a high degree of human errors with no guarantee of success. On the other hand, DMFB can be a great solution for miniaturization, int...
متن کاملطراحی و ساخت سیستم میکروفلوییدی و ارزیابی قابلیت آن جهت تولید اینترلوکین 2 توسط سلول های جورکت
Background and purpose: Microfluidic systems are microstructures that could be used to improve the conventional cell culture protocols used in laboratories. The aim of this research was to design and construct the microfluidic system and evaluating its ability to produce IL-2 by jurkat cells. Material and methods: At first, the sketch of microfluidic canals was designed by Corel draw and wa...
متن کاملNumerical Study of Droplet Generation Process in a Microfluidic Flow Focusing
Microfluidic flow focusing devices have been utilized for droplet generation on account of its superior control over droplet size. Droplet based microfluidics addressed many scientific issues by providing a novel technological platform for applications such as biology, pharmaceutical industry, biomedical studies and drug delivery. This study numerically investigated the droplet generation proce...
متن کاملA simple PDMS-based microfluidic channel design that removes bubbles for long-term on-chip culture of mammalian cells.
This report shows methods to fabricate polydimethylsiloxane (PDMS) microfluidic systems for long-term (up to 10 day) cell culture. Undesired bubble accumulation in microfluidic channels abruptly changes the microenvironment of adherent cells and leads to the damage and death of cells. Existing bubble trapping approaches have drawbacks such as the need to pause fluid flow, requirement for extern...
متن کامل